suku banyak


Suku Banyak

Suku banyak atau polinominal merupakan pernyataan matematika yang melibatkan penjumlahan perkalian pangkat dalam satu atau lebih variable dengan koefisien. Bisa dibilang polinominal merupakan bentuk aljabar dengan pangkat peubah bilangan bulat positif. Suku banyak dalam x berderajat n mempunyai bentuk umum:
a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots +a_2x^2+a_1x^1+a_0
§a_n, a_{n-1}, a_{n-2}, a-2, a_1 dan a_0 adalah konstanta real
§  a_n koefisien x^n,a_{n-1} koefisien x^{n-1},a_1 koefisien x^1 dan seterusnya
§  a_0 disebut suku tetap
§  n bilangan cacah yang menyatakan derajat suku banyak

Nilai Suku Banyak

Suku banyak dalam x berderajat n dapat ditulis dalam bentuk fungsi sebagai berikut:
f(x) = a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots +a_2x^2+a_1x^1+a_0
Nilai f(x) untuk x = k adalah f(k). Nilainya dapat ditentukan dengan dua strategi, yaitu:

Substitusi

Misalkan nilai f(x) = x^5 - 2x^4 +3x^3 + 4x^2 - 10x^1 + 3 untuk x = -2 dengan k \epsilon R dapat ditentukan dengan mensubstitusi menjadi:
f(-2) = (-2)^5 - 2(-2)^4 + 3(-2)^3 + 4(-2)^2 - 10(-2)^1 + 3
f(-2) = -32 - 32 - 24 + 16 + 20 + 3
f(-2) = -49

Komentar

Postingan populer dari blog ini

contoh soal trigonometri

contoh soal induksi matematika