sifat-sifat determinan matriks

Determinan matriks memiliki sifat-sifat berikut:
1. Determinan A = Determinan AT
2. Tanda determinan berubah jika 2 baris/2 kolom yang berdekatan dalam matriks ditukar
sifat sifat determinan matriks
3. Jika suatu baris atau kolom sebuah determinan matriks memiliki faktor p, maka p dapat dikeluarkan menjadi pengali.
\begin{vmatrix} 1 & 2 & 5 \\ 2 & 6 & 8 \\ 4 & 5 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ (2.1) & (2.3) & (2.4) \\ 4 & 5 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 5 \\ 1 & 3 & 4 \\ 4 & 5 & 2 \end{vmatrix}
4. Jika dua baris atau dua kolom merupakan saling berkelipatan, maka nilai determinannya adalah 0.
\begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 3 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 3[(1.2) - (2.1)] = 0
5. Nilai determinan dari matriks segitiga atas atau bawah adalah hasil kali dari elemen-elemen diagonal saja.
\begin{pmatrix} 1 & 0 & 0 \\ 2 & 6 & 0 \\ 4 & 5 & 2 \end{pmatrix} = (1.6.2) = 12

Komentar

Postingan populer dari blog ini

contoh soal trigonometri

contoh soal induksi matematika

suku banyak