perkalian dua matriks

Perkalian dua matriks

    Perkalian antara dua matriks yaitu matriks A dan B, dapat dilakukan jika jumlah kolom A sama dengan jumlah baris B. Perkalian tersebut menghasilkan suatu matriks dengan jumlah baris sama dengan matriks A dan jumlah saman dengan matriks B, sehingga:
perkalian matriks


Elemen-elemen matriks C_{(m \times s)} merupakan penjumlahan dari hasil kali elemen-elemen baris ke-i matriks A dengan kolom ke-j matiks B. Berikut skemanya:
perkalian elemen matriks
Misalkan matriks A memiliki ordo (3 x 4) dan matriks B memiliki ordo (4 x 2), maka matriks C memiliki ordo (3 x 2). Elemen C pada baris ke-2 dan kolom ke-2 atau a22 diperoleh dari jumlah hasil perkalian elemen-elemen baris ke-2 matriks A dan kolom ke 2 matriks B. Contoh:
A = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 2 & 5 & 1 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix} dan B = \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \\ 1 & 4 \end{pmatrix}
maka:
A \cdot B = C = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 2 & 5 & 1 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \\ 1 & 4 \end{pmatrix}
C = \begin{pmatrix} (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} a_{14}b_{41}) & (a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} a_{14}b_{42}) \\ (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} a_{24}b_{41}) & (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} a_{24}b_{42}) \\ (a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} a_{34}b_{41}) & (a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} a_{34}b_{42}) \end{pmatrix}
C = \begin{pmatrix}(2.1 + 1.3 + 4.2 + 3.1) & (2.3 + 1.2 + 4.5 + 3.4) \\ (2.1 + 5.3 + 1.2 + 2.1) & (2.3 + 5.2 + 1.5 + 2.4) \\ (1.1 + 3.3 + 2.2 + 2.1) & (1.3 + 3.2 + 2.5 + 2.4) \end{pmatrix}
C = \begin{pmatrix} 16 & 40 \\ 21 & 29 \\ 16 & 27 \end{pmatrix}
Perlu diingat sifat dari perkalian dua matriks bahwa:
A x B ≠ B x A

Komentar

Postingan populer dari blog ini

contoh soal trigonometri

contoh soal induksi matematika

suku banyak